Adam Foley-Comer¹, Shirley Greenwald¹, Ewa Cendrowicz², Rinat Tabakman¹, Liat Ben-Gigi-Tamir¹, Liat Ben-Gigi-Tamir¹, Liat Ben-Gigi-Tamir¹, Liat Ben-Gigi-Tamir¹, Liat Ben-Gigi-Tamir¹, Liat Ben-Gigi-Tamir¹, Shira Amsili¹, Alexandra Aronin¹, Shira Amsili¹, Alexandra Aronin¹, Liat Ben-Gigi-Tamir¹, Shira Amsili¹, Alexandra Aronin¹, Shira Amsili¹, Shira Amsili

¹KAHR-Medical, Jerusalem, Israel; ²University Medical Center, Dept. of Hematology, Groningen, Netherlands; ³Goldyne Savad Institute of Gene Therapy & ⁴Nephrology and Hypertenstion Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel

Background

Checkpoint inhibitors have transformed cancer treatment in certain patient subgroups. To improve response rates, considerable effort is now being invested developing novel immune-oncology (IO) drugs and exploring IO target combinations.

Dual signaling proteins (DSPs) are a fusion of extracellular domains of Type-I and Type-II membrane proteins. All TNF superfamily ligands are Type-II proteins, allowing them to be combined with numerous, potential targeting and effector Type-I proteins.

The DSP platform enables production of fusion proteins as trimers, a structure that is essential for TNF receptor family activation.

Targeted, dual therapeutic effect enhances efficacy and limits toxicity.

DSPs act as both targeting and effector molecules.

Mechanism of Action

DSP107 produces targeted immune activation leading to macrophage and T-cell mediated tumor destruction

DSP107 targets CD47-overexpressing tumors, simultaneously blocking phagocyte inhibitory signals and delivering an immune costimulatory signal

DSP107— a first in class, bifunctional, fusion protein targeting both innate and adaptive immunity

using sub-optimal concentrations of anti-CD3, known to induce 4-1BB expression on T-cells. CD25 and 4-1BB activation markers levels were evaluated by FACS.

In vivo effect of DSP107 on human DLBCL tumors evaluated in humanized NOD Scid Gamma (NSG) mice

1 x 10⁶ SUDHL6 cells inoculated sc on Day 0. On Day 7, mice randomly assigned according to scheme below Freshly isolated PBMCs, drawn from same donor, administered on Days 7 and 13

Group	N	Inoculated cell line	Human PBMCs (IV)	Treatment	Dose level (µg/mouse)	Route	Dosing Frequency & Duration
1	5	DLBCL SUDHL6	+	Vehicle (PBS)	-	IP	3 x / week (total of 6 doses)
2	6	DLBCL SUDHL6	+	DSP107	250	IP	3 x / week (total of 6 doses)

Treatment of SUDHL6 DLBCL tumors in humanized NSG mice with DSP107 resulted in a significant reduction in tumor volume (~70%) and tumor weight (34%)

DSP107 in vivo efficacy also evaluated in h4-1BB knock-in mice carrying hCD47-expressing MC38 tumors.

Six mice / group randomized according to scheme below:

Group	N	Inoculated cell line	Treatment	Dose level (µg/mouse)	Route	Dosing Frequency & Duration
1	6	hCD47-MC38	Vehicle (PBS)	-	IP	Day 0,1,2,3,4
2	6	hCD47-MC38	anti PD-L1	60	IP	BIW x 3 weeks
3	6	hCD47-MC38	DSP107	250	IP	Day 0,1,2,3,4
Δ	6	hCD47-MC38	DSP107	250	IP	Day 0,1,2,3,4
4			anti PD-L1	60	IP	BIW x 3 weeks

- DSP107 treatment wel tolerated as monotherapy and in combination with anti PD-L1
- Treatment with anti PD-L1 and DSP107 monotherapy trended towards inhibition in tumor growth
- DSP107 + anti PD-L1 combination resulted in statistically significant TGI of 83% (*p* = 0.02), compared to control mice
- Using Mantel-Cox analysis, combined treatment with DSP107 and anti PD-L1 resulted in a statistically significant improvement in survival compared to control mice (p = 0.01)

DSP107 demonstrates efficacy as monotherapy and in combination with anti PD-L1 in murine tumor models

16-day intravenous (infusion) administration range-finding toxicity study in cynomolgus monkeys (Study #8402826, Covance, UK) – Non-GLP 4 administrations of either 0, 5, 10, 30 or 50 mg/kg DSP107 on Days 1, 8, 12, 16 to one male + one female monkey / dose group

- DSP107 well tolerated during repeated administration of doses up to 50 mg/kg
- No clinically significant hematological or hepato-toxicity observed
- No evidence of cytokine release
- No macroscopic or microscopic findings

Summary and Conclusions

- DSP107 is a bifunctional, trimeric fusion protein with a unique MoA targeting both innate and adaptive immunity
- DSP107 blocks interaction of SIRPα with CD47, induces phagocytosis of cancer cells as a single agent and when combined with targeted therapies
- DSP107 promotes activation and proliferation of T-cells and enhances T-cell mediated killing of tumor cells
- DSP107 is efficacious as monotherapy and in combination with anti PD-L1 in murine cancer models
- Repeated doses up to 50 mg/kg were safe and well-tolerated in cynomolgus monkeys with absence of hematological or hepato-toxicity
- GLP tox and IND enabling studies ongoing
- Clinical studies scheduled to commence in Q2 2020

For further information: info@kahr-medical.com