

KOL Webinar on CD47 Therapeutics: A Potential Treatment For Solid Tumor and Hematological Malignancies

December 2021

AGENDA

Welcome and Introduction	Yaron Pereg, PhD, CEO, KAHR, Jerusalem, Israel			
Therapeutic potential of CD47 therapies for solid tumors	Ezra Cohen, MD, FRCPSC, FASCO, Chief of Hematology-Oncology at UC San Diego Moores Cancer Center, and o-Director of the San Diego Center for Precision Immunotherapy, San Diego, California			
Unmet need in MDS and AML and CD47 landscape	Naval G. Daver, MD, Associate Professor of Leukemia at MD Anderson Cancer Center, Houston, Texas			
KAHR Pipeline Overview	Yaron Pereg, PhD, CEO, KAHR, Jerusalem, Israel			
DSP107 Initial Phase 1 Data	Adam Foley-Comer, MD, CMO, KAHR, Jerusalem, Israel			
Q&A Session				

EZRA COHEN, MD, FRCPSC, FASCO CHIEF OF HEMATOLOGY-ONCOLOGY AT UC SAN DIEGO MOORES CANCER CENTER, AND CO-DIRECTOR OF THE SAN DIEGO CENTER FOR PRECISION IMMUNOTHERAPY

Ezra Cohen, MD, FRCPSC, FASCO is a board-certified oncologist and an internationally renowned cancer researcher. Dr. Cohen serves as co-director of UC San Diego Health's Precision Immunotherapy Clinic, which offers the most promising investigational immunotherapy treatments for many types of cancer, including head and neck cancers. At UC San Diego Health's Moores Cancer Center, he is associate director for translational science and the leader of the Solid Tumor Therapeutics research program. As a physician-scientist, Dr. Cohen also leads a laboratory that studies novel cancer treatments, including immunotherapy, with a particular focus on squamous cell carcinomas and cancers of the thyroid, salivary gland, and HPV-related oropharyngeal cancers. A frequent speaker at national and international meetings, he has authored more than 170 peer-reviewed papers and has been the principal investigator of multiple clinical trials of new drugs for head and neck cancer and other solid tumors in all phases of development. Dr. Cohen completed a hematology/oncology fellowship at the University of Chicago, where he was named chief fellow. He completed residencies in family medicine at the University of Toronto and in internal medicine at Albert Einstein College of Medicine. Dr. Cohen earned his medical degree at University of Toronto. He is board certified in medical oncology, and a fellow of the Royal College of Physicians and Surgeons of Canada (FRCPSC) and the American Society of Clinical Oncology (FASCO).

NAVAL G. DAVER, MD ASSOCIATE PROFESSOR OF LEUKEMIA AT MD ANDERSON CANCER CENTER, HOUSTON, TEXAS

Naval G. Daver, MD is an Associate Professor in the Department of Leukemia at MD Anderson Cancer Center. He completed his medical school from Grant Medical College and Sir J group of Hospitals Mumbai, followed by a residency and fellowship in hematology-oncology from Baylor College of Medicine. He is a clinical investigator with a focus on molecular and immune therapies in AML and Myelofibrosis and is principal investigator on >25 ongoing institutional, national and international clinical trials in these diseases. These trials focus on developing a personalized therapy approach by targeting specific mutations or immune pathways expressed by patients with AML, evaluating novel combinations of targeted, immune and cytotoxic agents, and identifying and overcoming mechanism of resistance. He is especially interested in developing monoclonal and bispecific antibodies, immune checkpoint and vaccine based approaches in AML, MDS, and myelofibrosis and is leading a number of these trials at MDACC. Dr. Daver has published >150 peer-reviewed manuscripts and is on the editorial board of numerous hematology specific journals. He has also authored numerous abstracts at national and international conferences.

UNMASKING CANCER CELL CAMOUFLAGE

COMPANY PRESENTATION | Dec. 2021

SPECIAL NOTE REGARDING FORWARD LOOKING STATEMENTS

This presentation contains forward-looking statements about our expectations, beliefs and intentions regarding, among other things, our product development efforts, business, financial condition, results of operations, strategies, plans and prospects. In addition, from time to time, we or our representatives have made or may make forward-looking statements, orally or in writing. Forward-looking statements can be identified by the use of forward-looking words such as "believe", "expect", "intend", "plan", "may", "should", "could", "might", "seek", "target", "will", "project", "forecast", "continue" or "anticipate" or their negatives or variations of these words or other comparable words or by the fact that these statements do not relate strictly to historical matters. Forward-looking statements relate to anticipated or expected events, activities, trends or results as of the date they are made. Because forw ard-looking statements relate to matters that have not yet occurred, these statements are inherently subject to risks and uncertainties that could cause our actual results to differ materially from any future results expressed or implied by the forward-looking statements. Many factors could cause our actual activities or results to differ materially from the activities and results anticipated in forw ard-looking statements.

We believe these forward-looking statements are reasonable; however, these statements are only current predictions and are subject to known and unknown risks, uncertainties and other factors that may cause our or our industry's actual results, levels of activity, performance or achievements to be materially different from those anticipated by the forward-looking statements.

All forward-looking statements speak only as of the date hereof, and we undertake no obligations to update or revise forward-looking statements to reflect events or circumstances that arise after the date made or to reflect the occurrence of unanticipated events, except as required by applicable law. In evaluating forward-looking statements, you should consider these risks and uncertainties.

MULTIFUNCTIONAL CANCER IMMUNOTHERAPIES TARGETING INNATE AND ADAPTIVE IMMUNE SYSTEMS

NOVEL MIRPs

Multifunctional Immuno-Recruitment Proteins – versatile platform targeting both innate & adaptive immunity across cancers

UNIQUE PIPELINE

- First-in-class potential across 3 programs
- Lead candidate DSP107 -
- CD47 inhibition (Cancer specific) 4-1BB activation (CD47-conditional)

UPCOMING MILESTONES

- DSP107 | Initial Ph I/II combo data H1 2022

- **DSP502 & DSP216** | IND 2023
- Multiple future candidates in research pipeline

MARKET Immuno-therapeutics \$56.5B by 2025 (Source: Allied Market Research)

IP

13 families
4 granted (US and other territories),
73 pending (NP worldwide and PCT stage)

Experienced Leadership

Management team, BOD and SAB comprised of leading experts including technology inventor, Prof. Mark Tykocinski, Dean of the School of Medicine and Provost, Jefferson University.

EXPERIENCED LEADERSHIP TEAM

Aron Knickerbocker, MBA Board Chairman

aulos

Genentech

FivePrime

Histol Myers Squibb

Yaron Pereg, PhD Chief Executive Officer

Tomer Cohen, MBA Chief Financial Officer Adam Foley-Comer, MD Chief Medical Officer

Ayelet Chajut, PhD Chief Technology Officer

AMGEN

IMMUNITY.

Genentech BIOLINERX

Cellect

BARCLAYS

Goldman Sachs

Locust Walk[®]

SCIENTIFIC ADVISORS AND BOARD OF DIRECTORS

Scientific and Clinical Advisory Board

Mark L. Tykocinski, MD

KAHR technology inventor; **BOD** Observer: Provost Jefferson Thomas University

Martin S. Tallman, MD

Chief Leukemia Service. Memorial Sloan Kettering Cancer Center

Ezra Cohen, M.D. Director San Diego

Center for Precision Immunotherapy

Hagop Kantarjian, M.D.

Chair Department of Leukemia at The University of Texas MD Anderson Cancer Center

THE UNIVERSITY OF TEXAS **MD**Anderson **Cancer** Center

Edwin Bremer, PhD

Professor at the **Translational Surgical** Oncology at the University Medical Center Groningen

Samir Khelif, MD

Director, Loop Immuno-Oncology Research Lab. Georgetown Lombardi

Comprehensive

Manuel Hidalgo, M.D., Ph.D

Chief Division of Hematology and Medical Oncology, Weill Cornell

Weill Cornell Medicine

Cancer Center

Georgetown | Lombardi COMPREHENSIVE CANCER CENTER

Board of Directors

Aron Knickerbocker

President & CEO of Aulos Bioscience, co-founder of RayzeBio; 25+ years as a leader in biotech

aulos

Thomas Eldered

FLERIE

INVEST

Chairman and owner Managing Director of Flerie Invest AB; at aMoon; 20+ yrs 25+ yrs in biotech and in healthcare and life sciences finance

Gur Roshwalb Merav Kave

Investment manager in Consensus Business Group; 7+ yrs project management and business

Carl-Johan Spak

Senior Advisor at Flerie Invest; 30+ yrs in pharmaceutical industry

FLERIE INVEST

Tamar Raz CEO of

Hadasit and chairperson of HBL; 20+ yrs in biotech and

life sciences Hadasit

Bio-Holdings Ltd.

Eval Lifschitz

General Partner and Co-Founder of Peregrine Ventures; 20+ yrs managing biotech companies

Co-Founder & Managing General Partner at ALIVE

Michel Habib

Israel HealthTech Fund; 20+ yrs investing in biotech

MULTIFUNCTIONAL IMMUNO-RECRUITMENT PROTEIN (MIRP) VERSATILE IMMUNO-THERAPEUTIC PLATFORM DESIGNED TO SAFELY OVERCOME CANCER EVASION

MIRPs trigger a multilayered immune response by:

Inhibiting key evasion markers on cancer cells

Activating innate and adaptive anti-tumor immunity

MIRP STRATEGIES FOR IMMUNE RECRUITMENT & ACTIVATION

Two configurations utilize different target-dependent strategies designed to improve safety and efficacy

DSP (Dual Signaling Protein)

Combined checkpoint inhibition and immune co-stimulation

4-1BB activator – *CD47-conditional T-cell activation*

CD47 inhibitor – *Trimeric binding for cancer specific blocking*

DSP-Fc (Dual Signaling Protein With Fc Domain)

Dual checkpoint inhibition for diverse immune modulation

DSP502

PVR inhibitor – Dual PD1/TIGIT inhibition with DNAMI potentiation

PD-L1 inhibitor – *T and NK cell activation*

Active IgG1 Fc – Half-life extension, ADCC activity

CD47 inhibitor –

Avidity driven for cancer specific blocking

HLA-G inhibitor – Inhibition of LILRB1,LILRB2

Inactive Fc – Half-life extension

DSP216

FOCUSED AND DIFFERENTIATED PIPELINE

MIRP Type	Program	Targets	Indications	Discovery	Preclinical	Phase 1	Phase 2	Phase 3	Upcoming Milestones	Commercial Rights
DSP	DSP107	CD47 4-1BB	Solid Tumors, NSCLC	DSP107 ± ate	zolizumab*				Initial Ph I/II combo results 1H 2022	
			AML / MDS	DSP107 ± aza	acitidine + veneto	oclax			Initial Ph Ib results Q4 2022	
DSP-Fc	DSP502	PVR PD-L1	Oncology						IND Filing 1H 2023	
	DSP216	HLA-G CD47	Oncology						IND Filing 2H 2023	

Roche

*Clinical trial collaboration and supply agreement with Roche for the PD-L1 inhibitor atezolizumab (TECENTRIQ®)

DSP107

MIRP Type	DSP
Targets	CD47, 4-1BB
Primary Cell Target	mø macrophages, T-effector cells
Mechanistic Effect	Unleash mø via 'Don't Eat Me' blockade, Activate T-eff

DSP107 UNIQUE TRIMERIC STRUCTURE ENABLES TUMOR SELECTIVITY

Trimeric ligand ends enable:

Cancer selective binding driven by high affinity and avidity to overexpressed CD47

Conditional 4-1BB mediated T cell activation dependent on trimeric binding to CD47 on cancer cells

3 SIRPα for CD47 Checkpoint Targeting

UNIQUE TRIMERIC STRUCTURE ENABLES TUMOR TARGETED 4-1BB CONDITIONAL ACTIVATION

SYNERGISTIC INNATE & ADAPTIVE IMMUNE ACTIVATION

DSP107 WELL POSITIONED TO SHOW ANTI-CANCER ACTIVITY AS MONOTHERAPY AND IN COMBINATION THERAPIES

DSP107 - DIFFERENTIATED CD47 TARGETING COMPOUND

Next generation capabilities

Dual MOA activates innate and adaptive immunity

Excellent safety without hematological toxicities **Strongly positioned** for treatment of solid and hematological malignancies

Unique and differentiated features

Activates T cells to secrete IFN-γ and augments their cancer cell killing potential

Augments macrophages-mediated phagocytosis of tumor cells as a single agent and synergizes with mAb's

Strong anti tumor activity as a single agent in solid tumors and liquid tumors in-vivo models DSP107 binding assessed by anti 41BBL (CRL)

Does not bind red blood cells, avoiding antigen sink issues, resulting in a best-in-class safety profile

DSP107 – CLINICAL DEVELOPMENT

DSP107 – CLINICAL DEVELOPMENT STRATEGY

Enrolling sites: Pittsburgh, Colorado, Kansas, Thomas Jefferson; Sites under evaluation: San-Diego, Augusta, Chapel Hill, University of Texas

Lead site: MD Anderson Cancer Center

TRIAL DESIGN AND KEY INCLUSION CRITERIA

Part 1 – Monotherapy and Combination Dose Escalation

Trial Design:

- Patients with advanced solid tumors (N=30) not suitable for curative therapy and without approved treatment options
- IV administration once weekly
- Accelerated dose escalation in single patient cohorts followed by standard 3+3 design

Key Inclusion Criteria:

- Histologically confirmed advanced solid tumor with no approved therapeutic options
- Age 18 years or older
- ECOG performance status 0 or 1
- Measurable disease per RECIST v 1.1

PATIENTS WITH ADVANCED SOLID TUMORS – NEARLY HALF FAILED PRIOR IMMUNOTHERAPY AND/OR COLD TUMORS

Characteristics	
Total number of patients	N = 17
Sex	6 (35%) ♀; 11 (65%) ♂
Age	Median 62 (Range 29-78)
Tumor types	
Colorectal	4 (24%)
Pancreas	4 (24%)
Head and Neck	3 (18%)
NSCLC	1 (6%)
Ovarian	1 (6%)
Rare tumor types	4 (24%)
Previous lines of therapy	Median 2 (Range 2-8)
PD1/PD-L1 experienced	8 (47%)

NO DLTS, HEMATOLOGICAL TOXICITIES OR HEPATO-TOXICITIES

Summary

- DSP107 doses up to and including 3 mg/kg considered safe and tolerated
- No DLTs and no treatment-related SAEs
- No hematological toxicities
- No hepato-toxicities
- Very few AEs considered related to DSP107 and almost all mild or moderate in severity
- Most related AEs Grade 1-2 in severity. Only 2 related Grade 3 AEs – transient hypertension and fatigue (at EOT visit)

Now enrolling patients to Dose Level 7 (10 mg/kg)

Treatment-Related AEs in \geq 2 Patients

Total No of Patients	N = 17
Treatment-related AEs (any grade)	n (%)
Any	12 (71)
Diarrhea	4 (24)
IRR*	3 (18)
Fatigue	3 (18)
Nausea	3 (18)
Constipation	2 (12)

*IRRs Grade 1-2 in severity. Easily abrogated in subsequent infusions by reduced rate of infusion and concomitant IV fluids.

FULL TARGET ENGAGEMENT ON CIRCULATING IMMUNE CELLS

- Dose dependent target engagement achieved across T cells and NK cells
- 100% receptor occupancy on circulating immune cells observed at \geq 3 mg/kg

RECEPTOR OCCUPANCY DATA CONFIRMS LACK OF RBC BINDING

No binding to red blood cells at doses 0.3, 1 and 3 mg/kg

On RBCs CD47 protein complex is anchored to cytoskeleton resulting in its immobilization and low affinity of DSP107 to the monomeric CD47

INCREASED NECROSIS IN PAIRED BIOPSIES AFTER DSP107

Key Findings:

- Notable increase in necrotic tumor tissue was observed in 3 out of 4 paired biopsies compared to screening
- Necrosis was associated with immune cell infiltration
- No evidence of vascular necrosis

Patient Number	Dose (mg/kg)	Tumor Type	Timepoint	% Necrosis
11 001	0.3	Colorectal	Screening	0
11-001			6 weeks	65
11-002	0.3	Colorectal	Screening	2
			6 weeks	35
10-003	1	Pancreatic	Screening	10
			6 weeks	50
13-005	1	Pancreatic	Screening	4
			6 weeks	3

All biopsies collected from hepatic metastases pre-treatment and following cycle 2 (6 doses). H&E stained slides assessed by independent, blinded pathologist.

CASE STUDY: NECROSIS ASSOCIATED WITH INCREASED IMMUNE CELL INFILTRATION AFTER DSP107

Paired biopsy from colon carcinoma patient (11-001) in dose level 4 (0.3 mg/kg) pre- treatment and following cycle 2 (6 doses). No necrosis at baseline.

CASE STUDY: INCREASED IMMUNE INFILTRATION AFTER DSP107

6-wks post DSP107 treatment

Paired biopsy from colon carcinoma patient (11-001) in dose level 4 (0.3 mg/kg) pre- treatment and following cycle 2 (6 doses). Quantification of multiplex image analysis from biopsy stains.

> Significant infiltration of T cells and NK cells in both the tumor compartment and at the tumor margin following DSP107 treatment

BEST OVERALL RESPONSE TO DATE AFTER DSP107 MONOTHERAPY

*Has not reached first CT scan evaluation. †Includes two patients withdrawn before first CT scan due to clinical progression.

DSP107 PHASE 1 DATA: FAVORABLE SAFETY AND PRELIMINARY ACTIVITY IN SOLID TUMORS

Clinical Overview

- DSP107 alone and in combination with atezolizumab is being evaluated in a dose escalation trial
- 17 patients with diverse solid tumors have been treated as of data cut-off on Nov. 4th 2021, with 16 patients evaluable for efficacy analysis
- Now enrolling patients to cohort 7 (10 mg/kg)

Key Findings

- Mostly low-grade AEs with no DLTs, no hematological toxicities and no hepato-toxicities
- Receptor occupancy data confirming lack of RBC binding and immune cell engagement
- Increase immune cell infiltration into the tumor with increased tumor necrosis

Further evaluate safety and preliminary efficacy of DSP107 alone up to dose level 7, as well in combination with atezolizumab

KEY UPCOMING MILESTONES

